
Distributed Collaboration Among Humans
and Software Control Agents

C. Martin, D. Schreckenghost, P. Bonasso, D. Kortenkamp, T. Milam, and C. Thronesbery
NASA Johnson Space Center

TRACLabs
1012 Hercules, Houston, TX, 77058 USA

1 (281) 461-9525

cmartin@traclabs.com, ghost@ieee.org

ABSTRACT
This paper describes an implemented software prototype for the
Distributed Collaboration and Interaction (DCI) system, which
addresses the challenges of helping humans to act as an integrated
part of a multi-agent system. This area of research is unexplored
to a large extent. Human interaction with agents who act
autonomously most of the time, such as a process control agent in
a power plant, has received little attention compared to human
interaction with agents who provide a direct service to humans,
such as information retrieval. This paper describes how liaison
agents within the DCI system can support human interaction with
agents that are not human-centric by design but must be
supervised by or coordinated with humans. Further, the DCI
prototype supports notification and planning for humans from the
perspective of an organization. It treats humans in this
organization as if they were agents with explicitly modeled roles
and activities related to software agents in the same system.
Planning for humans presents unique challenges because the
models represented in traditional planners do not match well with
human mental models. The DCI prototype is applied in the
domain of NASA advanced life support systems, which are
controlled primarily by software agents in an autonomous fashion
with occasional human intervention. The DCI system provides a
step toward future seamless integration of humans and software
agents into a cohesive multi-agent system.

1. INTRODUCTION
As software agents become more capable and more prevalent,
humans must be able to interact with a heterogeneous collection
of humans and software agents. Both humans and software
agents can play diverse roles in a system, with varying degrees of
autonomy, initiative, and authority across different tasks.
Although many of today's software agents commonly interact
with humans, these interactions are often in direct service to the
human in a one-on-one manner, much like a human's interaction
with a travel agent, for example. However, software agents can
also undertake long-term, autonomous operations that serve
human purposes as well, though not through direct interaction
with a human.
Humans need to interact with autonomous agents over long-term
operation for a variety of reasons including monitoring,
modifying goals, maintaining or repairing underlying hardware or
software, responding to anomalies, and taking advantage of
opportunities. However, research supporting human interaction
with these types of agents has received relatively little attention.

As more software agents are deployed for long-term autonomous
operation, the research challenge of enabling agents and humans
to work together as a complete system becomes more important.
To meet this challenge, research must overcome issues such as
limited visibility into the agent's processing, mismatches between
a human's mental models and the agent's implementation models,
inadequate adjustability of the agent's autonomy, lack of
notification to the human about important events at appropriate
levels of abstraction, and a basic lack of compatibility between a
human's interface capabilities and the interfaces provided by a
software agent.
We have developed the Distributed Collaboration and Interaction
(DCI) system to address these difficulties in human-agent
interaction and to create an environment in which humans and
software agents together can form an integrated multi-agent
system. The initial motivation for the DCI system arose from our
experiences with deployed intelligent control agents for NASA
advanced life support systems. These intelligent control agents
monitor and perform process control for regenerative life support
systems, which recover usable water or air, for example, from the
waste products created by biological systems over time. Over
months to years of continuous operation of these agents, we
discovered many unaddressed needs for human interaction. These
lessons learned are detailed in [21]. Through the DCI prototype
described in this paper, we have addressed and enhanced our
understanding of these interaction needs and begun to formulate
solutions.
Further, we have recognized the need for and provided support for
interactions of groups of humans and software agents that are
coordinated at the level of the organization they support. Based
on our own experiences, the NASA organization (considering
mission objectives and constraints) defines policies and protocols
for fulfilling human roles within the organization as well as for
the operation of software agents during the missions. A similar
requirement to support organizational needs could be seen in the
management of power plant operations, for example, if automated
control agents were deployed for process control with possible
monitoring and intervention by human supervisors. These types
of organizations can be realized as heterogeneous human-agent
multi-agent systems. In these systems, organizational policies
and objectives require humans to perform in various roles and to
maintain a specified level of situation awareness with respect to
the automated control agents and the underlying hardware they
control. In the course of their duties, humans must be able to
interact with and influence the software control agents. The DCI

system supports these organizational requirements by providing
an environment through which humans can act as system agents
with roles and tasks managed by the organization along with
software agents who perform other operations in the organization.
This paper describes how the development of the DCI prototype
addressed unique challenges to apply automated planning for
organizational goals to human agents.
The DCI approach uses intermediate liaison agents associated
with each human to provide an interfacing layer between the
human and the rest of a multi-agent system. These liaison agents
have the purpose of representing an individual human to the rest
of the software in the system while supporting a human-centric
and user-friendly interface for that human into the system. We
also use augmenting software associated with other existing
software in the multi-agent system (for example, a centralized
planner or a particular software agent or group of these agents) to
handle the human-interfacing requirements related to that domain-
centric software. Although the domain-centric software must
internalize some basic human-interaction functionality such as
adjustable autonomy [7], our approach avoids overburdening
resource-limited software agents, whose processing may include
time-critical tasks, with tasks that are not directly related to their
primary organizational objectives. The augmenting software is
designed to integrate closely with the domain-specific software
and thus off-load much of the human-centric processing.
This paper provides an overview of the DCI system and a
description of a software prototype that implements many of the
desired behaviors of the DCI environment. This prototype is
applied to support NASA engineers working with intelligent
control agents for advanced life support systems. We provide an
overview of this application and a description of how the DCI
prototype supports human interaction with an intelligent control
agent within the context of organizationally defined roles and
interaction policies. We next provide details about the
implementation steps we took within the DCI environment to
interface humans to a centralized planner that manages the
humans' roles and activities. We then discuss some of the related
research that supports this work, and we conclude with a
summary and a discussion of research issues.

2. PROTOTYPE APPLICATION DOMAIN
Since 1995, we have been developing intelligent control systems
for advanced life support [20; 2]. These control systems have
been realized by software agents using an architecture known as
3T [1], and were designed to run autonomously for months at a
time. 3T is a layered control architecture whose top tier is a
hierarchical task net (HTN) planner, the plans of which are
executed through a reactive middle tier that in turn manages the
sensors and actuators of the hardware via a low-level control tier.
One such life support system is the advanced Water Recovery
System (WRS). Developed at Johnson Space Center (JSC), the
WRS is comprised of four hardware subsystems that remove the
organic and inorganic materials from waste water (hand wash,
shower, urine and respiration condensate) to produce potable
water. From January 2001 through April 2002, the 3T system
controlled the WRS autonomously in a continuous 24/7 integrated
test [2]. The hardware and control software for the WRS operated
unattended in JSC's Water Processing Facility (WPF) while the
human hardware and software engineers performed intermittent

monitoring from remote locations (office, home, etc.) for
anomalies in the system due to network, hardware, or power
failures.
Over this period of operation, the humans were responsible for
monitoring and occasionally intervening in WRS operations while
spending the majority of their time carrying out their daily tasks
on unrelated projects. Software support for this remote
monitoring was minimal due to funding constraints, and remote
interaction with the control system to correct problems was
unavailable. Several other interaction needs were also identified
in areas such as notification and improved visibility into the
control system [21]. To explore support for WRS controls
management, an early version of the DCI system prototype was
deployed with the WRS 3T system in April 2002, and we have
continued to develop the prototype and apply it to this domain
through a simulation of the WRS 3T system.
Our DCI prototype supports a number of human agents, each with
a set of daily activities to perform as mandated by the
organization, much as NASA mission tasks would be mandated
for crew members. Additionally, three of the humans are
responsible for handling anomalies that occur in the WRS. One
agent, the Prime, has first responsibility for responding to
problems in the WRS; a second agent, the Backup, has the job of
taking over if the Prime is unable to respond to the problem. The
Coordinator oversees the work of the other two agents and also
serves as the secondary Backup. The following section provides
an overview of the DCI system and describes how the current
DCI prototype supports these human agents in interacting with the
WRS control agent.

3. DCI OVERVIEW AND PROTOTYPE
The philosophy behind the DCI system involves creating an
environment that supports human collaboration and interaction
with software agents and also giving humans appropriate tools
and interfaces to participate effectively in these interactions. In
short, we are striving to provide a virtual environment in which
the human can interact naturally with software agents. The DCI
system is made up of three types of software (1) augmenting
software that integrates with domain-centric software or software
agents to provide a human-friendly virtual multi-agent
environment, (2) liaison agents that serve a human’s interaction
needs both to and from this virtual environment, and (3) user-
interface software that is managed by the liaison agents to provide
a comfortable, effective, user-friendly interface for the human to
the multi-agent system.
Figure 1 depicts representative elements of a DCI system. The
entities with black backgrounds (the human, the WRS system and
its control agent, and the multi-agent planner) participate in, but
are not part of, the DCI environment. The following paragraphs
describe the function of each DCI entity in Figure 1 as well as
how the entity is instantiated and used in the DCI prototype.
The Conversion Assistant for Planning (CAP) and the Event
Detection Assistant (EDA) are representative pieces of
augmenting software in the DCI system. The CAP is software
that is tightly coupled and shares models with the automated
planner, thereby augmenting the planner’s ability to interface with
human agents. Our planner is a hierarchical task net (HTN)
planner known as AP that is capable of automatically monitoring
and updating its plans [8]. AP evenly distributes the workload

among agents based on their capabilities and reasons about metric
time for scheduling. The CAP’s functionality is discussed in
detail in Section 4. The EDA monitors data produced by the
WRS control system and searches for patterns in this data that are
of interest to the humans for such activities as anomaly analysis
and performance assessment. The EDA is implemented using the
Complex Event Recognition Architecture (CERA), an event
detection system developed by I/Net
(www.inetmi.com/whatsnew/pressrel/03-01-01.htm). As
specified patterns are detected in the control data, the EDA
generates and broadcasts its own events about these data patterns,
which are represented at levels of abstraction suited to human
understanding.

Liaison agents are central to the DCI system because they
represent the human to other software agents and vice versa. The
liaison agents in DCI are called Attentive Remote Interaction and
Execution Liaison (ARIEL) agents, in deference to Shakespeare’s
Tempest character. Although the ARIEL agents in the current
DCI prototype are not yet implemented as complete agents with
explicit goals and desires, they do hold explicit beliefs about the
state of their human user, and they exhibit many of the basic
processing behaviors desired for a complete ARIEL agent
implementation in the future. The beliefs held by an ARIEL
agent are managed by its State Management Service (SMS), which
takes input from many of ARIEL’s other services and creates a
coherent state model of the user, including current activity,
location, role, schedule, and health. The SMS also interacts with
its user by querying for state input (such as schedule
acknowledgements), when appropriate. Other services
represented in ARIEL’s design include:

• Notification Service (NS): The NS combines information about
the user’s current state and roles, organizational policies about
information distribution and situation-awareness requirements,
and the user’s own information preferences to determine if an
incoming notice or event is of interest and, if so, how to inform
the user. How to inform the user of a notice is expressed as an
assessment of the “latency” and “focus of attention” [19] to be
used when presenting the information, and a selection of
interface modalities (e.g., computer display, pager, email) to

use for this presentation. The NS implementation and the
representation of specifications an organization or individual
may use to filter or present notices are described in detail in
[19]. In the DCI prototype, the NS that is associated with the
human who has the Prime role ensures that he is notified of
important WRS anomaly events with high saliency. However
the Backup is allowed to continue her current task without
distraction because her NS simply logs anomaly notices.
Notices processed by the DCI prototype include (1) events
generated by the Event Detection Assistant about the WRS
control system, (2) notices from the ARIEL agent to its user
about ARIEL requests such as the need for schedule
acknowledgement, and (3) events generated by the ARIEL
agents of other humans in the user’s group about various
human state changes such as a location change.

• Task Status Service (TSS): The TSS provides activity tracking
and plan management capabilities. In the DCI prototype, the
TSS (1) monitors the user for acknowledgement of time-critical
assigned activities such as WRS repair tasks, (2) uses
information generated by the augmented planner to inform its
user when a planned task becomes ready to execute, (3)
monitors its user for evidence that critical tasks have been
initiated using location information or direct user queries, and
(4) provides a source of feedback to the augmented planner
about human progress or lack of progress toward achieving a
plan. The TSS helps the ARIEL agent close the loop between
the planner and a human, which is especially important for
time-critical repair tasks in the DCI prototype application. The
TSS implementation is discussed further in Section 4.

• Location Service (LS): The LS tracks human location
information including physical location and cyber location, i.e.,
whether or not the user is online and which display platforms
she is currently using. In addition, the location service uses the
combination of physical and cyber location information to infer
an overall assessment of the user’s presence, for example,
“Available-Remote-Online.” This location information is
provided through the State Management Service to the other
services and is used (1) by the Task Status Service in tracking
the initiation or completion status of activities, (2) by the
Notification Service in determining which notification modality
is currently most appropriate, and (3) by the User Interface
Service in customizing the presentation of information. In the
DCI prototype, a user’s physical location is tracked through
log-in and log-out events within the DCI environment (via
static IP mapping). We are also in the process of incorporating
the use of GPS devices to track physical location. Similar
versions of location tracking have been used successfully by
other systems [6; 17].

• User Interface Service (UIS): The UIS manages all direct
interaction with the user. It invokes different modalities, such
as display, pager, or email, to present information in the
manner most appropriate to the user’s current state and task. It
also manages the overall state of information presented by any
persistent user interface (e.g., a graphical user interface, GUI,
versus a transient pager message) such that multiple locally-
managed views of this information will remain consistent (e.g.,
multiple GUIs open on different display platforms). In the DCI
prototype, the UIS is capable of sending emails, posting to and
accepting information from the DCI user interface GUIs
discussed later in this section, and accessing a simulated pager

planner
(AP) WRS Life

Support
System

WRS control
agent

WRS Life
Support
System

WRS control
agent

Human

Conversion Assistant for Planning
(CAP)

GUI Situation Viewer

Event
Detection
Assistant

(EDA)

Command/
Authorize

(CAS)

Interrupt
Handle

(IHS)

Task
Status
(TSS)

Interactive
Procedure

(IPS)

Interactive
Event
(IES)

Notification
(NS)

Location
(LS)

User
Interface

(UIS)

State
Management

(SMS)

ARIEL

Figure 1. Representative elements of DCI architecture.

server. Multiple interface modalities for posting information to
humans have been managed successfully in related research
projects such as [17]. In the future, we hope to incorporate
increasingly natural and more sophisticated human-agent
interaction mechanisms into this service.

The remaining ARIEL services are not yet implemented in the
DCI prototype:

• Command and Authorization Service (CAS): The CAS supports
the user in remotely interacting with mostly autonomous agents
who are tied to physical systems that the user also influences,
such as the underlying WRS life support system hardware.
“Commanding” refers to a user’s action of issuing directives to
the underlying physical system (e.g., turning on a pump).
Using DCI, this commanding should be mediated through the
autonomous agent controlling the system, when possible. The
CAS (1) determines if the user is authorized to command (i.e.,
access control), (2) ensures command lock-outs or resolves
command conflicts when more than one user is interacting with
the system or the control agent (e.g., the WRS control agent),
and (3) reconfiguring both the automation and user interface in
preparation for commanding (i.e., adjusting the autonomy of
the WRS control agent).

• Interruption Handling Service (IHS): The IHS coordinates the
actions of other services (the Notification Service, for example)
to minimize the impact of interruptions on the user’s primary
tasks. Support for interruption handling includes (1)
determining when the user should be interrupted and how
intrusive the interruption should be, (2) mapping the human
concepts of task status at interruption (delayed, deferred,
suspended) to the changes needed to update the plan by an
automated planner (e.g., goal changes, task completion status
changes), and (3) assisting the user in managing multiple,
concurrent threads of activity.

• Interactive Procedure Service (IPS): The IPS assists the user in
temporarily modifying standard operating procedures executed
by the automated control software.

• Interactive Event Service (IES): The IES assists the user in
interactively defining temporary, new operational events and
controlling automated monitoring for these events.

The user interface software in the DCI system is critical for
providing humans with effective tools to participate in the overall
multi-agent system. The prototype’s user interface software
currently consists of GUIs that give a user access to (1) her
ARIEL agent’s current model of her user state, (2) her schedule as
planned and updated by the augmented planner and as annotated
with status information by the Task Status Service, (3) the archive
of notices that her Notification Service has determined are
relevant, and (4) a high-level overview toolbar as shown in Figure
2. Additional GUIs that are in the design stages for the DCI
prototype include (1) a view of the state of the user’s group, and
(2) a dialogue interface that allows the user to interact
conversationally with other human and software agents, including
the ARIEL agents of other group members.
Figure 2 shows the primary DCI user interface toolbar. This
toolbar is designed to be always visible on a small section of the
user’s display and is used for multiple purposes. First, it provides
buttons that allow a user to access other DCI GUIs. Second, it
provides the user with “at a glance” information about important

changes that have recently occurred, to which the ARIEL agent is
drawing the user’s attention. In Figure 2, the schedule icon has
been highlighted with a red exclamation point indicating a very
important scheduling event, in this case the insertion of a time-
critical repair task to the user’s schedule as the next task the user
needs to perform. (This icon actually flashes on and off and
makes a sound in the prototype to better draw the user’s
attention.) The notice icon in Figure 2 also draws the user’s
attention to a lesser extent by indicating that two highly important
or urgent notices are available. The toolbar shown in Figure 2 can
be used to quickly orient the user to the current operational
situation when she logs in to the DCI system and to alert her to
what has transpired while she was offline. It also provides
situation awareness as she works at other tasks while logged in to
the system. The toolbar implementation uses saliency annotations
from the Notification Service and the Task Status Service to
determine whether to concentrate the user’s focus of attention
(with flashing icons and sounds) or to rely on the user’s peripheral
awareness to detect changes (with simple icon changes as in [5]).
The Situation Viewer provides one further element needed in an
effective user interface for humans interacting with intelligent
control agents. In the DCI prototype, the Situation Viewer
summarizes complex situations recognized by the Event
Detection Assistant and provides needed visibility into the
operation of the WRS control system. Previous work in viewing
situations focused on providing organized logs [24]. This work
integrates discrete and analog events at multiple levels of
abstraction provided as part of the situation data structure.
The DCI prototype is implemented as a distributed system of
approximately 30 processes using both CORBA and IPC [22] for
distributed communications. The user interface software and
most of the ARIEL services are implemented in Java and have
been executed at various times on Linux, Windows, and
Macintosh systems. The CAP augmentation for the planner, each
Task Status Service, and the Event Detection Assistant using
CERA are implemented in Lisp and execute on Linux systems.
This overview of the DCI prototype shows how the DCI system
supports human interaction with the WRS intelligent control
system. Although we limit our in-depth discussion in the
following section to applying automated planning for humans,
similar design and implementation challenges arose for each piece
of the prototype.

4. PLANNING FOR HUMAN AGENTS
The DCI prototype explores applying an automated planner to
plan for humans from the perspective of the NASA organization,
for both daily tasks as well as for unexpected tasks due to
anomalies that arise from the WRS operations. This section
describes (1) the overall challenges we have observed for
applying automated planning to human agents, (2) the approach

Figure 2. DCI toolbar. Icons access additional GUIs (user
state, schedule, notices, group, conversation, and logout).

taken in the DCI prototype to explore possible solutions to these
challenges, and (3) the resulting support provided by the DCI
prototype for the WRS controls domain to which we have applied
the prototype. Our initial exploration of these challenges in the
DCI prototype provides a step toward future, more general
solutions across application domains.

Applying an automated planner to human agents poses interesting
research issues because autonomous planners do not integrate
with humans in the same manner as they do with other software
agents, such as layered control architectures like 3T [1]. These
issues arise from the different ways in which automated agents
and humans treat the plan. An agent like 3T will perform all tasks
in the plan it receives in a pre-specified manner. On the other-
hand, a human agent interprets a plan generated for him or her at
a higher level of abstraction. Even if he or she intends to follow
the plan there exists less inherent predictability about how and
when the tasks will be accomplished. In addition, humans and
software agents interact with planners differently. Software
agents can be very responsive, even for low-level operations. For
example, the WRS control agent will acknowledge every directive
and execute plan steps as soon as possible. In contrast, humans
are less responsive and would find frequent interaction with the
planner burdensome. For example, humans may fail to
acknowledge tasks before starting to execute them or fail to
provide evidence that tasks have been completed. Further,
software agents can easily understand a planner’s representation
of a plan through common semantics and data structures.
However, a human, concerned primarily with what she must do
and when, needs a different representation of the generated plan.
For example, compare the view of a plan generated by AP in

Figure 3, to the personalized daily schedule view of a similar plan
provided through the DCI prototype for a given user in Figure 4.

4.1 System Design
The DCI system accommodates the differences between planning
for software agents and planning for human agents by adding
software to mediate between the human and the automated
planner perspectives. By encapsulating the capabilities
supporting each perspective in its own process, we handle
separately (1) integration with the planner perspective and (2)
integration with the human perspective. The interaction among
DCI components providing this mediation for planning is shown
in Figure 5. Note that multiple humans would correspond to
multiple ARIEL agents in this figure, all of whom interact with a
single planner and its associated augmentation software.

First, DCI handles integration with the planner perspective
through the Conversion Assistant for Planning (CAP). The CAP
conditions plans generated by the planner for use by humans and
their ARIEL agents, and it converts information coming from
humans and their ARIEL agents to the planner’s perspective.
Beyond these interpretation duties, the CAP is responsible for
monitoring the execution of the group plan and to initiate
updating the plan (e.g., prompting the planner to replan) when the
domain situation changes or when agents become unavailable.

Second, DCI handles integration with the human perspective
through the ARIEL agent and corresponding user interfaces.
ARIEL’s Task Status Service (TSS) is responsible to track human
activities and to model when new activities are ready to execute
and when ongoing activities are completed or overcome by
events. The State Management Service (SMS) creates a user-
centric model of the plan provided by CAP and annotates this
model with status information from TSS. The User Interface
Service (UIS) uses the SMS model of the plan to generate a

Figure 3. A typical group plan generated for four agents by the automated planner AP [8]. The hierarchy is read from left (most

abstract) to right (plan leaves). Highlighted tasks are ready to be executed.

Figure 4. DCI personalized schedule view. Plans from the
automated planner appear to the user in a natural form.
Tool tips over the activity names show the status of a given
activity currently modeled by the user’s ARIEL agent.

planner

H
um

an

CAP

G
U

I

TSS

UIS

SMS

ARIEL

Figure 5. Information flow among DCI components mediating

between a human and an automated planner

schedule model that is the basis for the schedule view seen by the
user. The ARIEL agent serves both the human, by providing a
useable schedule interface (as in Figure 4), and the planner, by
providing feedback about task completion and acknowledgment,
which humans do not typically provide in a manner that is easily
used for computation.

4.2 Prototype Application
The remainder of this section describes how we used this
approach to support centralized planning for human agents in the
DCI prototype applied to the WRS domain. The planner controls
task assignment, but does not dictate the low-level details of how
the humans carry out their tasks. Note that this type of
centralized control for human activities is needed to achieve the
organizational goals of humans such as NASA crew members on
a mission, during which their time serves as a critical resource
and their activities are highly regimented. The following typical
WRS scenario is provided for context:

Initially, the planner generates a plan of daily tasks for the human
agents such as the plan shown in Figure 3. Once the initial plan is
in effect, the CAP monitors the status of the WRS for anomalies
that require human intervention. When the CAP receives
evidence of such an anomaly, it invokes the planner to generate a
new group plan that encompasses a repair task for the anomaly,
using the agent roles and responsibilities previously described.
The new plan usually means a schedule alteration for the human
who is on-call for the WRS (the Prime). The CAP and the
Prime’s ARIEL agent work together to inform the Prime that her
current task must be interrupted and a new time-critical repair
task must be performed. The Prime’s ARIEL agent monitors the
user’s display interface and the user’s location for evidence that
she has accepted and initiated the new task and provides feedback
to the CAP about the status of this activity. If the Prime is not
able to acknowledge or initiate the repair task within an
appropriate time, the CAP interprets the resulting status events
generated by her ARIEL agent as a temporary unavailability of
this human agent for time-critical tasks, and initiates replanning
with this information. AP will reassign the task to the Backup
agent, and the CAP will use the resulting plan and knowledge of
the state of execution of the other daily tasks to reassign the
remaining daily tasks to the Prime agent. Although this scenario
seems straightforward, each DCI component shown in Figure 5
performs critical processing to mediate this interaction.

In the DCI prototype, the CAP (1) recognizes when situations
occur requiring an update of the group plan including both the
initial need for a repair task and any agent availability problems
that may occur, (2) recasts planning information provided by the
planner for the user, and (3) maintains continuity of activities
across plan updates to support a human’s perception of activities.
For example, although the concept of “interruption” is a natural
way for humans to mentally model task status, AP, like most AI
planners, does not model the notion of a task placed in abeyance
until another more critical task is executed, such as the WRS
repair task. In AP the successful execution of a task should bring
about a set of desired effects in AP’s perceived situation. These
include effects from sensed data, like a communication from 3T
that a problem has been corrected, as well as effects added by AP
when a task is completed such as the purpose clause (a first order
proposition) of a given plan operator. If these effects are not in the
perceived situation when a new plan is generated, and the task

purpose is still a desired goal for the user, the task will again
appear in the new plan. The CAP needs to properly interpret this
reappearance for the user to avoid redundant updates, and to
correctly indicate whether a task has indeed been interrupted. By
comparing the task purpose with that of previously assigned tasks,
checking for the existence of the effects of the task in the
perceived situation, and keeping track of the initiation status of
events, the CAP can determine whether a given task has been
interrupted.

The overall functions of the TSS with respect to activity tracking
and plan management are described in Section 3. At a finer level
of detail, the TSS (1) models and reasons about task criticality to
determine whether to request user acknowledgement and when to
focus the user’s attention on a particular activity and (2) assesses
changes in activity status using both direct activity feedback from
the user and indirect evidence. With respect to the first point, the
TSS distinguishes time-critical tasks such as WRS repair tasks
from other, non-critical tasks such as routine daily activities. The
TSS requires more responsiveness and interaction from the user
for time critical tasks.

To assess activity status, the TSS may make assumptions about
the status of non-critical tasks, but requires evidence to infer
status changes for time-critical WRS repair tasks. When a time-
critical task is assigned to a user, his TSS begins watching for an
acknowledgement that he has accepted the task. As the current
time approaches the timeout limit for acknowledgement of the
task, the TSS attaches an increased saliency to the task, which
causes the User Interface Service to attempt to focus his attention
on the request for acknowledgement. If he does acknowledge the
assignment of the time-critical task within the allotted time
period, the TSS begins monitoring for indirect evidence that the
user has initiated the task, such as the arrival of the agent at the
location where the activity should take place, e.g., the Water
Processing Facility. The TSS also monitors for direct evidence
that the WRS repair task has been completed, e.g., in the case of
lost communications within the WRS system, the evidence comes
in the form of a message from the control software agent that the
communications have been restored. The TSS provides all status
updates to the CAP, allowing the CAP to effectively manage
coordination of the human agents with respect to the WRS and
find a new agent to perform a given repair task, if necessary.

For non-critical daily tasks, the current TSS implementation in the
DCI prototype minimizes user distraction by making assumptions
about task initiation and completion. The TSS assumes these
tasks are initiated and completed at the times they are scheduled,
as long as the human has previously acknowledged her
acceptance of the most recent overall daily schedule. Future TSS
implementations will involve more instrumentation of the user for
these routine tasks and will allow after-action task-status
reconciliation with the user to confirm, for example, whether
tasks inferred complete were actually performed.

The discussion in this section clearly shows that the interleaving
of time-critical tasks with daily human activities through
automated planning requires special considerations, and the CAP
and the ARIEL agents must work together to keep the human and
planner up to date with respect to scheduled and executing tasks.
Through this coordinated, intelligent interplay between the CAP
and the ARIEL agents, the DCI architecture compliments and
extends the capabilities of the automated planning algorithms so

that they can better serve the human users. As shown in the DCI
overview in Section 3, these capabilities are an important piece of
the overall objective to support human interaction within a multi-
agent system.

5. RELATED WORK
To integrate humans into a multi-agent system alongside software
agents, we have leveraged existing research across a wide range
of areas including, human-agent interaction [15; 12], teaming and
human-agent teams [6; 14; 4], user interfaces and underlying
applications [17; 5], characteristics of autonomous agents
including adjustable autonomy [7; 16], and planning tools and
mixed-initiative planning [9; 13; 11]. This section highlights
some of this research and how it applies to DCI.
A very successful and innovative implementation of interaction
between humans and software agents has been demonstrated in
the Electric Elves system to support human organizations [6].
This system incorporates multiple humans and multiple software
agents; however, each human interacts primarily with the
capabilities of his or her own “proxy” (or with non-autonomous
software accessed through the proxy). The Electric Elves
architecture does not fully address our requirements for support
agents to act as mediators and/or enablers for humans to interact
with yet a third class of agents: autonomous control systems.
The interface agents in the MokSAF environment support human
interaction with software agents in human/agent teams in the
domain of decision-support for military route planning [14].
These interface agents assist humans in tasking other agents
(route-planning agents), present situation information to the
human team members, and help humans communicate and
coordinate with other humans. All of these capabilities are
desirable for ARIEL agents in DCI, and the MokSAF work
identifies many important issues with respect to enabling an
interface agent to act on a user’s behalf. However, the MokSAF
environment does not address DCI’s need to interact with mostly
autonomous agents because the route-planning agents are still
human-centric in that their primary purpose is to assist a human in
generating a route, if tasked by the human to do so.
Bradshaw et al have investigated human-agent teamwork in depth
[4]. For example, they are modeling human-robot collaboration,
using Brahms to simulate human work practice [4]. They
continue to develop policies to support agent interaction and
teamwork, based on KAoS agent services [3]. This work
represents the type of basic theories and types of services to
enforce interaction policies that are needed to support further DCI
implementation of increasingly complex human-agent interaction.
Few research efforts in AI planning are focused on interpreting
the output of an automated planner for a human agent to whom
the plan applies. There have been many efforts to make it easier
for a human planner to use automated planning tools [13; 11] and
mixed-initiative planning [9]. Also, several planners, like AP [8],
have been designed to manage the activities of large groups of
humans such as military units, but not individuals [25; 23]. The
output of NASA's automated aids for planning the daily activities
of shuttle and station crew is either interpreted by another human
(e.g., the CapCom) or transformed into paper schedules managed
by humans [10]. In contrast, the DCI system needs a planner that
not only generates and updates plans for individual humans, but

also interprets the plans so that the humans have a ready
understanding of their current and future tasks [18].

6. CONCLUSIONS
This paper describes the Distributed Collaboration and Interaction
(DCI) system design and an implemented prototype of that
design. DCI aids human interaction with complex, mostly
autonomous, domain-centric software agents in the context of an
integrated multi-agent system supporting organizational goals and
policies. In addition to an overview of DCI, we provide a detailed
description of the challenges we faced to apply multi-agent
planning to human agents. Through the DCI environment,
humans can become part of the multi-agent world and act
naturally within it. As autonomous software agents become more
common, both in environments that highly regiment the activity
of human agents such as NASA mission support and in every-day
environments such as smart houses, supporting a human’s ability
to interact with these software agents becomes increasingly
important.
In the development of the DCI prototype, we have addressed
many interaction challenges including (1) mapping models and
data designed for use by software (and thus containing artifacts of
implementation choices) to human-usable information, (2)
balancing an organization’s need for human awareness of
software agent activities with the need to avoid both information
and cognitive overload, and (3) providing necessary feedback
about human state to automated software that is difficult or
annoying for humans to provide manually. These interactions are
directed both toward the human and toward other software agents.
Our next step is to provide fully interactive multi-step interactions
between humans and autonomous control agents.
We have seen the need for integration of humans with mostly
autonomous software agents through our experiences with
autonomous control agents for NASA life support systems.
Supporting this type of multi-agent system, including planning for
humans as agents, is a relatively novel endeavor. Through our
work to prototype the DCI system, we hope to discover a set of
design principles for building systems like this in the future. Thus
far, we have seen that:

• Neither thin “wrappers” around software agents nor
sophisticated user interfaces are enough to support human
interaction with complex software agents. Our experience
indicates that active and vigilant processing, based on
knowledge of the complexity of the software agents as well as
knowledge of the needs of the human, is required to allow the
human to manifest herself effectively into a multi-agent world.
The concept of a liaison agent fits this role well.

• For effective interaction, complex software agents must
implement some human-centric functionality such as the
capability for adjustable autonomy allowing humans to
supervise and adjust the agents’ behavior if necessary.
However, much of the human-centric processing can be
handled by tightly coupled external software to avoid
overloading the software agents and degrading their
performance on their primary task.

Based on our experiences, human interaction with complex
software agents (who themselves interact with one another and
who have their own, independent goals) has received relatively
little previous attention. We have designed the DCI system to

address these issues and applied a DCI prototype in a NASA-
oriented domain. This DCI prototype represents an important
step toward integrating humans with multi-agent systems in the
future.

7. ACKNOWLEDGEMENTS
We want to acknowledge the support of Dr Michael Shafto, the
manager of the Human-Centered Computing topic in NASA's
Intelligent Systems Program, under which this work was done.

8. REFERENCES
[1] Bonasso, R. P., Firby, J. R., Gat, E., Kortenkamp, D., Miller,

D. P., and Slack, M. G. Experiences with an Architecture for
Intelligent, Reactive Agents. Journal of Experimental and
Theoretical Artificial Intelligence, 9 (1997). 237-256.

[2] Bonasso, R. P., Kortenkamp, D., and Thronesbery, C.
Intelligent Control of A Water Recovery System: Three
years in the Trenches. AI Magazine 23 (4). (2002).

[3] Bradshaw, J. M., Dutfield, S., Benoit, P., and Woolley, J. D.
KAoS: Toward an Industrial-strength Generic Agent
Architecture. In Software Agents, Bradshaw, J. M., ed. AAAI
Press/ The MIT Press, Cambridge, MA, 1997. 375-418.

[4] Bradshaw, J. M., Sierhuis, M., Acquisti, A., Feltovich, P.,
Hoffman, R., Jeffers, R., Prescott, D., Suri, N., Uszok, A.,
and van Hoof, R. Adjustable Autonomy and Human-Agent
Teamwork in Practice: An Interim Report on Space
Applications. In Agent Autonomy, Hexmoor, H., Falcone, R.,
and Castelfranchi, C., eds. Kluwer, To Appear.

[5] Cadiz, J., Venolia, G. D., Jancke, G., and Gupta, A. Sideshow:
Providing Peripheral Awareness of Important Information,
Technical Report. MSR-TR-2001-83, Microsoft Research,
Redmond, WA, 2001.

[6] Chalupsky, H., Gil, Y., Knoblock, C. A., Lerman, K., Oh, J.,
Pynadath, D. V., Russ, T. A., and Tambe, M. Electric Elves:
Applying Agent Technology to Support Human
Organizations. In Proceedings of Innovative Applications of
Artificial Intelligence (Seattle, WA, 2001).

[7] Dorais, G. A., Bonasso, R. P., Kortenkamp, D., Pell, B., and
Schreckenghost, D. Adjustable Autonomy for Human-
Centered Autonomous Systems on Mars. In Proceedings of
Mars Society Conference, 1998).

[8] Elsaesser, C. and Sanborn, J. An Architecture for Adversarial
Planning. IEEE Transactions on Systems, Man, and
Cybernetics, 20, 1 (1990). 186-194.

[9] Ferguson, G. and Allen, J. F. TRIPS: An Integrated Intelligent
Problem-Solving Assistant. In Proceedings of Fifteenth
National Conference on Artificial Intelligence (AAAI-98)
(Madison, WI, 1998).

[10] JSC. Consolidated Planning Systems (CPS) Users Manual,
Johnson Space Center, Houston, TX, 1999.

[11] Knoblock, C. A., Minton, S., Ambite, J. L., Muslea, M., Oh,
J., and Frank, M. Mixed Initiative Multi-source Information
Assistants. In Proceedings of Proceedings of the10th
International World Wide Web Conference (Hong Kong,
2001). www10.org/cdrom/papers/frame.html.

[12] Lewis, M. Designing for Human-Agent Interaction. AI
Magazine 19 (2): 67-78. (1998).

[13] Myers, K. L., Tyson, M. W., Wolverton, M. J., Jarvis, P. A.,
Lee, T. J., and desJardins, M. PASSAT: A User-Centric
Planning Framework. In Proceedings of 3rd International
NASA Workshop on Planning and Scheduling for Space
(Houston, TX, 2002). Institute for Advanced
Interdisciplinary Research.

[14] Payne, T. R., Sycara, K., and Lewis, M. Varying the User
Interaction within Multi-Agent Systems. In Proceedings of
Fourth International Conference on Autonomous Agents
(Barcelona, Catalonia, Spain, 2000). ACM Press. 412-418.

[15] Rich, C. and Sidner, C. L. COLLAGEN: A Collaboration
Manager for Software Interface Agents. User Modeling and
User-Adapted Interaction, 8, 3-4 (1998). 315-350.

[16] Scerri, P., Pynadath, D. V., and Tambe, M. Adjustable
Autonomy in Real-World Multi-Agent Environments. In
Proceedings of Autonomous Agents (Montreal, Canada,
2001). ACM Press. 300-307.

[17] Schmandt, C., Marmasse, N., Marti, S., Sawhney, N., and
Wheeler, S. Everywhere Messaging. IBM Systems Journal,
39, 3&4 (2000). 660-677.

[18] Schreckenghost, D. and Hudson, M. B. Automation in
Context: Planning Manned Space Exploration Activities. In
Proceedings of ISAIRAS (Montreal, Canada, 2001).

[19] Schreckenghost, D., Martin, C. E., and Thronesbery, C.
Specifying Organizational Policies and Individual
Preferences for Human-Software Interaction. In Proceedings
of AAAI Fall Symposium on Etiquette for Human-Computer
Work (North Falmouth, MA, 2002).

[20] Schreckenghost, D., Ryan, D., Thronesbery, C., Bonasso, R.
P., and Poirot, D. Intelligent Control of Life Support Systems
for Space Habitats. In Proceedings of Tenth Conference on
Innovative Applications of Artificial Intelligence (Madison,
WI, 1998). AAAI Press / The MIT Press. 1140-1145.

[21] Schreckenghost, D., Thronesbery, C., Bonasso, R. P.,
Kortenkamp, D., and Martin, C. E. Intelligent Control of Life
Support for Space Missions. IEEE Intelligent Systems
September/October: 24-31. (2002).

[22] Simmons, R. and Dale, J. Inter-Process Communication: A
Reference Manual. IPC Version 6.0. CMU Robotics
Institute, 1997.

[23] Tate, A., Dalton, J., and Levine, J. O-Plan: A Web-based AI
Planning Agent. In Proceedings of Seventeenth National
Conference on Artificial Intelligence (Austin, TX, 2000).
AAAI Press. 1131-1132.

[24] Thronesbery, C., Christoffersen, K., and Malin, J. Situation-
Oriented Displays of Shuttle Data. In Proceedings of Human
Factors and Ergonomics Society 43rd Annual Meeting
(Houston, TX, 1999).

[25] Wilkins, D. and Myers, K. A Multiagent Planning
Architecture. In Proceedings of Artificial Intelligence
Planning Systems (Pittsburg, PA, 1998). 154-162.

